There's no line here to end.end
Hallo,
ich Ich habe gestern an meinem Dokument gearbeitet und wenige Zeilen hinzugefügt und plötzlich lässt sich mein Dokument nicht mehr übersetzen. Bei mir wird der Fehler **"There's `There's no line here to end.(Zeile 164)"** 164)` angezeigt und ebenso **"\headheight `\headheight is too small (12.0pt)"**. (12.0pt)`. Ich habe nach langer Recherche keine Lösung gefunden und wende mich somit an euch!
<pre>\documentclass[a4paper,10pt,leqno]{article}
\documentclass[a4paper,10pt,leqno]{article}
\usepackage{fancyhdr}
%\usepackage{fancyheadings}
\usepackage[ngerman]{babel}
\usepackage[utf8]{inputenc}
%\usepackage[latin1]{inputenc}
\usepackage[active]{srcltx}
\usepackage{algorithm}
\usepackage[noend]{algorithmic}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{bbm}
\usepackage{enumerate}
\usepackage{graphicx}
\usepackage{ifthen}
\usepackage{listings}
\usepackage{struktex}
\usepackage{hyperref}
%\usepackage{mathdots}
%
% % % % % % % % % % % % % % % % % % % %
\newcommand{\p}{\partial}
\newcommand{\N}{\mathbf{N}} \newcommand{\Z}{\mathbf{Z}} \newcommand{\Q}{\mathbf{Q}} \newcommand{\R}{\mathbf{R}} \newcommand{\C}{\mathbf{C}} \newcommand{\K}{\mathbf{K}}
\newcommand{\T}{\mathbf{T}}
\newcommand{\Grad}{\text{Grad}}
\renewcommand{\L}{\textup{L}}
\renewcommand{\i}{\mathrm{i}}
\newcommand{\dd}{{\, \mathrm d}}
\newcommand{\vv}{\varphi}
%\renewcommand\d{\mathop{}\!{\mathrm{d}}}
\newcommand{\expo}[1]{\,{\mathrm e}^{#1}\,} %mathds
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% EDIT THIS PART %%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\Fach}{}
\newcommand{\Name}{Niklas Hebestreit}
\newcommand{\Seminargruppe}{2}
\newcommand{\Matrikelnummer}{211241047}
\newcommand{\Semester}{WS 14/15}
\newcommand{\Uebungsblatt}{3} % <-- UPDATE ME
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setlength{\parindent}{0em}
\topmargin -1.0cm
\oddsidemargin 0cm
\evensidemargin 0cm
\setlength{\textheight}{9.2in}
\setlength{\textwidth}{6.0in}
%
\hypersetup{
pdftitle={Fachseminar Matrixfunktionen},
pdfauthor={\Name},
pdfborder={0 0 0}
}
\lstset{ %
language=java,
basicstyle=\footnotesize\tt,
showtabs=false,
tabsize=2,
captionpos=b,
breaklines=true,
extendedchars=true,
showstringspaces=false,
flexiblecolumns=true,
}
\title{Sere \Uebungsblatt{}}
\author{\Name{}}
\theoremstyle{definition} %Mit defi werden die Theoreme nicht kursiv geschrieben
\newtheorem{Definition}{Definition} %Durch [Definition] wird die Nummerierung an die erste Definition angepasst. [Definition]'en in den anderen \newtheorem liefern diese Ausrichtung
\newtheorem{Bemerkung}[Definition]{Bemerkung}
\newtheorem{Satz}[Definition]{Satz}
\newtheorem{Theorem}[Definition]{Theorem}
\newtheorem{Lemma}[Definition]{Lemma}
\newtheorem{Hilfssatz}[Definition]{Hilfssatz}
\newtheorem{Korollar}[Definition]{Korollar}
\newtheorem{Proposition}[Definition]{Proposition}
\newtheorem*{Beweis}{Beweis}
%
\begin{document}
\thispagestyle{fancy}
\lhead{\sf \large \Fach{} \\ \small Fachseminar Matrixfunktionen }
\rhead{\sf \small \Name{} \\ \sf \small 14.04.2015 }
\vspace{1cm}
Betrachte für $0\leq t <\infty$ das Anfangswertproblem
\begin{align}\label{gl1}
\dot{x}(t) & = A x(t) \\
x(0) &= x_0,
\end{align}
wobei $x:\R^n \to \R^n$, $x_0\in \R^n$ gegeben ist und $A\in\C^{n\times n}$ ist. Es ist bekannt, dann $x(t)= \expo{At}x_0$ die (eindeutige) Lösung von \eqref{gl1} ist. Da $\expo{At}$ als Reihe definiert ist, genauer $\expo{A}=\sum_{j=0}^{\infty}\frac{A^j}{j!}$, liegt die Schwierigkeit, die Lösung von \eqref{gl1} anzugeben, in der Auswertung von $\expo{At}$. Dies geschieht zum einen mittels der Jordanschen Normalform $J=Q^{-1}AQ$, wobei $\det(Q)\neq 0$ und $J$ Blockdiagonalform hat. Es gibt noch weiter Möglichkeiten ...
Ziel dieses Votrags ist es eine Darstellung für $\expo{At}$ zu finden, welche die Bestimmung der Jordanschen Normalform von $A$ umgeht, sodass lediglich (endliche) Potenzen von $A$ bestimmt werden müssen.
Festlegungen:
$A\in\C^{n\times n}$ und bezeichne mit
\begin{align*}
f_A(\lambda) = \det(\lambda E - A)=\lambda^n +c_{n-1}\lambda^{n-1}+ \dotsc + c_1\lambda + c_0
\end{align*}
das charakteristische Polynom von $A$. Sei $z(t)$ die Lösung der Differentialgleichung
\begin{align*}
z^{(n)}+c_{n-1}z^{(n-1)} + \dotsc + c_1 \dot{z}+c_0 z = 0
\end{align*}
mit den Anfangswerten
\begin{align*}
z(0)=\dot{z}(0)= \dotsc = z^{(n-2)}=0, \qquad z^{(n-1)}(0)=1.
\end{align*}
Definiere weiter
\begin{align*}
Z(t)= \begin{pmatrix}
z(t) \\ \dot{z}(t) \\ \vdots \\z^{(n-1)}(t)
\end{pmatrix}
\ \text{und} \
\begin{pmatrix}
c_1 & c_2 & \dotsc & c_{n-1} & 1 \\
c_2 & c_3 & \dotsc & 1 \\
\vdots & & %\iddots \\
c_{n-1} & 1 \\
1
\end{pmatrix}.
\end{align*}
\begin{Theorem}
\emph{
Es gilt
\begin{align}\label{ziel1}
\expo{At}=\sum_{j=0}^{n-1}q_j(t)A^j, \qquad \forall A \in \C^{n\times n}.
\end{align}
}
\end{Theorem}
\begin{proof}
Sei $A\in \C^{n\times n}$ beliebig und setze
\begin{align*}
\Phi(t)=\sum_{j=0}^{n-1}q_j(t)A^j.
\end{align*}
Gleichung \eqref{ziel1} ist bewiesen, wenn man zeigen kann, dass $\Phi(t)$ Lösung des Anfangswertproblems $\dot\Phi(t)=A \Phi(t)$, $\Phi(0)=E$ ist, da $t\mapsto \expo{At}$ die einzige Lösung ist. Offensichtlich erfüllt $\Phi$ die Anfangsbedingung, denn es gilt nach Definition $q_0(0)=z^{(n-1)}(0)=1$ und
\begin{align*}
q_j(0)=z^{(n-j-1)}(0)+\sum_{k=1}^{n-j-1}c_{k+j}z^{(k-1)}(0)=0, \qquad \forall j\in\{1, \dotsc, n-1\}.
\end{align*}
Zeige nun $\dot\Phi(t)-A \Phi(t)=0$. Es gilt
\begin{align}\label{eins}
\dot\Phi(t)-A \Phi(t)=\sum_{j=0}^{n-1}\dot{q}_j(t)A^j-\sum_{j=0}^{n-1}q_j(t)A^{j+1}=\dot{q}_0(t)E-q_{n-1}(t)A^n+\sum_{j=1}^{n-1}\Big(\dot{q}_j(t)-q_{j-1}(t) \Big)A^j.
\end{align}
Das Hamilton-Caley Theorem liefert $f_A(A)=A^n + \sum_{j=0}^{n-1}c_jA^j =0$, also gerade
\begin{align*}
-q_{n-1}(t)A^n = c_0q_{n-1}(t)E+\sum_{j=1}^{n-1}c_jq_{n-1}(t)A^j.
\end{align*}
Einsetzen in \eqref{eins} liefert somit insgesamt
\begin{align*}
\dot{\Phi}(t)-A \Phi(t)=\Big( \dot{q}_0(t)+c_0 q_{n-1}(t) \Big) E + \sum_{j=1}^{n-1} \Big( \dot{q}_j(t)-q_{j-1}(t)+c_j q_{n-1}(t) \Big)A^j.
\end{align*}
Im Folgenden genügt es also weiter lediglich
\begin{align*}
\dot{q}_0(t) &= -c_0q_{n-1}(t) \\
\dot{q}_j(t) &= q_{j-1}-c_jq_{n-1}(t),\qquad \forall j\in\{1, \dotsc, n-1\}
\end{align*}
zu zeigen. Nach Definition gilt $q_j(t)= z^{(n-j-1)}(t) +\sum_{k=1}^{n-j-1}c_{k+j}z^{(k-1)}(t)$ für alle $j\in\{1, \dotsc, n-1\}$. Dies liefert $\dot{q}_j(t)= z^{(n-j)}(t)+\sum_{k=1}^{n-j-1}c_{k+j}z^{(k)}(t)$ für alle $j\in\{1, \dotsc, n-1\}$ und zusammen mit $q_{n-1}(t)=z(t)$ folgt
\begin{align}\label{gl}
\dot{q}_j(t) + c_j q_{n-1}(t)= z^{(n-j)}(t)+\sum_{k=0}^{n-j-1}c_{k+j}z^{(k)}(t), \qquad \forall j\in\{0,1, \dotsc, n-1\}.
\end{align}
Für $j=0$ folgt also gerade
\begin{align*}
\dot{q}_0(t) + c_0 q_{n-1}(t)= z^{(n)}(t)+\sum_{k=0}^{n-1}c_{k}z^{(k)}(t)=0,
\end{align*}
da nach Voraussetzung $t\mapsto z(t)$ Lösung von [DGL] ist. Betrachtet man nun für $j\geq 1$ gerade $q_j(t)= z^{(n-j-1)}(t) +\sum_{k=1}^{n-j-1}c_{k+j}z^{(k-1)}(t)$ unter den Substitutionen $j\mapsto j-1$ und $k\mapsto k+1$, dann liefert dies gerade
\begin{align*}
q_{j-1}(t)= z^{(n-j)}(t)+\sum_{k=0}^{n-j-1}c_{k+j}z^{(k)}(t), \qquad \forall j\in\{1, \dotsc, n-1\},
\end{align*}
was mit \eqref{gl} schließlich $\dot{q}_j(t) = q_{j-1}(t)-c_jq_{n-1}(t)$ für alle $j\in\{1, \dotsc, n-1\}$ zeigt.
\end{proof}
\begin{Theorem}
\emph{Es gilt
\begin{align*}
\expo{A t} = \sum_{j=0}^{n-1}r_{j+1}(t)P_i, \qquad \forall A\in \C^{n\times n}
\end{align*}
wobei $P_0=E$, $P_j = \prod_{k=1}^{j}(A-\lambda_k E)$ für $j\in\{1, \dotsc, n\}$ und $r_1(t), \dotsc , r_n(t)$ die Lösungen des Systems
\begin{equation*}
\begin{alignedat}{2}
\dot{r}_1(t) &= \lambda_1 r_1(t) \\
\dot{r}_j(t) &= r_{j-1}(t)+\lambda_j r_j(t), &&\qquad\forall j\in\{2, \dotsc, n\} \\
r_1(0) &= 1, \quad r_j(0)=0, &&\qquad \forall j\in\{2, \dotsc, n\}
\end{alignedat}
\end{equation*}
seien.}
\end{Theorem}
\begin{proof}
Sei $A\in\C^{n\times n}$ beliebig. Setze
\begin{align*}
\Phi(t) = \sum_{j=0}^{n-1}r_{j+1}(t)P_i.
\end{align*}
Wieder wird gezeigt, dass $\Phi$ Lösung des Anfangswertproblems $\dot{\Phi}(t)=A \Phi(t)$, $\Phi(0)=E$ ist, und somit $\Phi(t)=\expo{At}$ gilt. \\
Setze $r_0(t)=0$. Dann folgt mit $\dot{r}_{j+1}(t) = r_{j}(t)+\lambda_{j+1} r_{j+1}(t)$ und einer Indexverschiebung
\begin{align*}
\dot{\Phi}(t)- \lambda_n \Phi(t) &= \sum_{j=0}^{n-1}\dot{r}_{j+1}(t)P_i - \sum_{j=0}^{n-1}r_{j+1}(t)P_i \\
&= \sum_{j=0}^{n-1}\Big(r_{j}(t)+\lambda_{j+1} r_{j+1}(t) \Big)P_i - \sum_{j=0}^{n-1}r_{j+1}(t)P_i \\
&= \sum_{j=0}^{n-2}\Big( P_{j+1}+ \left(\lambda_{j+1}-\lambda_n \right) P_j \Big) r_{j+1}(t).
\end{align*}
Wegen $P_{j+1}= (A-\lambda_{j+1}E)P_j$ folgt aus obiger Gleichung
\begin{align}
\begin{split}\label{fin}
\dot{\Phi}(t)- \lambda_n \Phi(t) &= \sum_{j=0}^{n-2}\Big(A-\lambda_n E \Big)P_j r_{j+1}(t) \\
&= (A-\lambda_n E) \big( \Phi(t)- r_n(t)P_{n-1} \big) \\
&=(A-\lambda_n E)\Phi -r_n(t)P_n.
\end{split}
\end{align}
Wegen dem Hamilton-Cayley Theorem gilt $f_A(A)=P_n=0$, also folgt aus \eqref{fin} gerade $\dot{\Phi}(t) = A \Phi(t)$.
Da wegen $r_j(0)=0$ für $ j\in\{2, \dotsc, n\}$ und $r_1(0)=1$ gerade
\begin{align*}
\Phi(0)=r_1(0)E+\sum_{j=2}^{n}r_{j}(0)P_{j-1} = E
\end{align*}
gilt, folgt insgesamt $\Phi(t)=\expo{At}$.
\end{proof}
\end{document}