Wie kann ich in TikZ die Schreibarbeit durch for-Schleifen vereinfachen?
Zur Zeit erweitere ich ein TikZ-Trapez (Eingangsfrage mit Code: [Trapezförmige Tabelle][1]); und würde gerne wissen, wie ich
\begin{tikzpicture}[every node/.append style={minimum width=1cm, minimum height=1cm}]
% Eckpunkte
\node (1) at (14,16) {1};
\node (2) at (1,16) {2};
\node (3) at (2,0) {3};
\node (4) at (9,0) {4};
% Gitterpunkte der oberen und unteren Seite:
\node (O1) at ($ (1) !.125! (2) $) {O1};
\node (O2) at ($ (1) !.25! (2) $) {O2};
\node (O3) at ($ (1) !.375! (2) $) {O3};
\node (O4) at ($ (1) !.5! (2) $) {O4};
\node (O5) at ($ (1) !.625! (2) $) {O5};
\node (O6) at ($ (1) !.75! (2) $) {O6};
\node (O7) at ($ (1) !.875! (2) $) {O7};
\node (U1) at ($ (4) !.125! (3) $) {U1};
\node (U2) at ($ (4) !.25! (3) $) {U2};
\node (U3) at ($ (4) !.375! (3) $) {U3};
\node (U4) at ($ (4) !.5! (3) $) {U4};
\node (U5) at ($ (4) !.625! (3) $) {U5};
\node (U6) at ($ (4) !.75! (3) $) {U6};
\node (U7) at ($ (4) !.875! (3) $) {U7};
% Gitterpunkte der linken und rechten Seite:
\node (L1) at ($ (2) !.1429! (3) $) {L1};
\node (L2) at ($ (2) !.2857! (3) $) {L2};
\node (L3) at ($ (2) !.4286! (3) $) {L3};
\node (L4) at ($ (2) !.5714! (3) $) {L4};
\node (L5) at ($ (2) !.7143! (3) $) {L5};
\node (L6) at ($ (2) !.8571! (3) $) {L6};
\node (R1) at ($ (1) !.1429! (4) $) {R1};
\node (R2) at ($ (1) !.2857! (4) $) {R2};
\node (R3) at ($ (1) !.4286! (4) $) {R3};
\node (R4) at ($ (1) !.5714! (4) $) {R4};
\node (R5) at ($ (1) !.7143! (4) $) {R5};
\node (R6) at ($ (1) !.8571! (4) $) {R6};
% Festlegung senkrechter und waagerechter Reihen:
\path [name path=O1--U1] (O1) -- (U1);
\path [name path=O2--U2] (O2) -- (U2);
\path [name path=O3--U3] (O3) -- (U3);
\path [name path=O4--U4] (O4) -- (U4);
\path [name path=O5--U5] (O5) -- (U5);
\path [name path=O6--U6] (O6) -- (U6);
\path [name path=O7--U7] (O7) -- (U7);
\path [name path=L1--R1] (L1) -- (R1);
\path [name path=L2--R2] (L2) -- (R2);
\path [name path=L3--R3] (L3) -- (R3);
\path [name path=L4--R4] (L4) -- (R4);
\path [name path=L5--R5] (L5) -- (R5);
\path [name path=L6--R6] (L6) -- (R6);
% Schnittpunkte der senkrechen mit den waagerechten Reihen als neue Gitterpunkte:
\path [name intersections = {of=O1--U1 and L1--R1, by=11}]; \node at (11) {11};
\path [name intersections = {of=O2--U2 and L1--R1, by=21}]; \node at (21) {21};
\path [name intersections = {of=O3--U3 and L1--R1, by=31}]; \node at (31) {31};
\path [name intersections = {of=O4--U4 and L1--R1, by=41}]; \node at (41) {41};
\path [name intersections = {of=O5--U5 and L1--R1, by=51}]; \node at (51) {51};
\path [name intersections = {of=O6--U6 and L1--R1, by=61}]; \node at (61) {61};
\path [name intersections = {of=O7--U7 and L1--R1, by=71}]; \node at (71) {71};
\path [name intersections = {of=O1--U1 and L2--R2, by=12}]; \node at (12) {12};
\path [name intersections = {of=O2--U2 and L2--R2, by=22}]; \node at (22) {22};
\path [name intersections = {of=O3--U3 and L2--R2, by=32}]; \node at (32) {32};
\path [name intersections = {of=O4--U4 and L2--R2, by=42}]; \node at (42) {42};
\path [name intersections = {of=O5--U5 and L2--R2, by=52}]; \node at (52) {52};
\path [name intersections = {of=O6--U6 and L2--R2, by=62}]; \node at (62) {62};
\path [name intersections = {of=O7--U7 and L2--R2, by=72}]; \node at (72) {72};
\path [name intersections = {of=O1--U1 and L3--R3, by=13}]; \node at (13) {13};
\path [name intersections = {of=O2--U2 and L3--R3, by=23}]; \node at (23) {23};
\path [name intersections = {of=O3--U3 and L3--R3, by=33}]; \node at (33) {33};
\path [name intersections = {of=O4--U4 and L3--R3, by=43}]; \node at (43) {43};
\path [name intersections = {of=O5--U5 and L3--R3, by=53}]; \node at (53) {53};
\path [name intersections = {of=O6--U6 and L3--R3, by=63}]; \node at (63) {63};
\path [name intersections = {of=O7--U7 and L3--R3, by=73}]; \node at (73) {73};
\path [name intersections = {of=O1--U1 and L4--R4, by=14}]; \node at (14) {14};
\path [name intersections = {of=O2--U2 and L4--R4, by=24}]; \node at (24) {24};
\path [name intersections = {of=O3--U3 and L4--R4, by=34}]; \node at (34) {34};
\path [name intersections = {of=O4--U4 and L4--R4, by=44}]; \node at (44) {44};
\path [name intersections = {of=O5--U5 and L4--R4, by=54}]; \node at (54) {54};
\path [name intersections = {of=O6--U6 and L4--R4, by=64}]; \node at (64) {64};
\path [name intersections = {of=O7--U7 and L4--R4, by=74}]; \node at (74) {74};
\path [name intersections = {of=O1--U1 and L5--R5, by=15}]; \node at (15) {15};
\path [name intersections = {of=O2--U2 and L5--R5, by=25}]; \node at (25) {25};
\path [name intersections = {of=O3--U3 and L5--R5, by=35}]; \node at (35) {35};
\path [name intersections = {of=O4--U4 and L5--R5, by=45}]; \node at (45) {45};
\path [name intersections = {of=O5--U5 and L5--R5, by=55}]; \node at (55) {55};
\path [name intersections = {of=O6--U6 and L5--R5, by=65}]; \node at (65) {65};
\path [name intersections = {of=O7--U7 and L5--R5, by=75}]; \node at (75) {75};
\path [name intersections = {of=O1--U1 and L6--R6, by=16}]; \node at (16) {16};
\path [name intersections = {of=O2--U2 and L6--R6, by=26}]; \node at (26) {26};
\path [name intersections = {of=O3--U3 and L6--R6, by=36}]; \node at (36) {36};
\path [name intersections = {of=O4--U4 and L6--R6, by=46}]; \node at (46) {46};
\path [name intersections = {of=O5--U5 and L6--R6, by=56}]; \node at (56) {56};
\path [name intersections = {of=O6--U6 and L6--R6, by=66}]; \node at (66) {66};
\path [name intersections = {of=O7--U7 and L6--R6, by=76}]; \node at (76) {76};
...
über eine for -Schleife oder soetwas vereinfachen könnte?
[1]: http://texwelt.de/wissen/fragen/3610/trapezformige-tabelle-mit-tikz